Cancer, usually referred to uncontrolled growth of abnormal cells, leading to the formation of a tumour. It is strongly believed that the best chance to arrest cancer is its early detection. Nevertheless, it is not possible to detect many tumors until it is grown sufficiently or it spreads across other parts of the body. Numerous efforts are constantly being made by several researchers to develop effective methods for cancer detection. During the uncontrolled growth of cancer cells some of them would die and shed their mutated DNA into the bloodstream. Liquid biopsy test could detect the DNA carrying mutations, which are associated with cancer. However, development of liquid biopsy test that is capable of screening healthy people remains a big challenge. In addition, the inability of the liquid biopsy test to detect the location of the cancer is a major limitation. A team of researchers at Johns Hopkins University School of Medicine, Baltimore led by Nickolas Papadopoulos and Bert Vogelstein have developed a multi-analyte blood test, referred as “CancerSEEK” for early detection of cancer. CancerSEEK is a ‘liquid biopsy test” that examines mutations in cell-free DNA and proteins circulating in the bloodstream (Fig. 1). This research work is funded by National Institute of Health (NIH), USA and the findings of this study is published recently in Science (J. D. Cohen et al., Science 10.1126/science.aar3247 (2018)).
Fig. 1 Schematic of the liquid biopsy test – Tumour cells shed protein and DNA into the blood stream that can be used as biomarkers for early cancer detection
About 1,005 patients diagnosed with ovary, liver, stomach, pancreas, esophagus, colorectum, lung, or breast cancers (Stage I to III) were used to check the ability of CancerSEEK in which none of them have received chemotherapy prior to blood sample collection and none had evident distant metastasis at the time of study. CancerSEEK evaluates the levels of 8 proteins and the presence of mutations in 2,001 genomic positions in 16 different genes, which helps to identify at least eight common types of cancers. Since the test uses a combination of protein biomarkers along with genetic biomarkers, a better sensitivity is achieved without compromising specificity. CancerSEEK is capable of not only identifying the presence of tumours but also localize the organ at which the cancer cells are grown.
CancerSEEK was found to be 98% accurate for tumours in ovary and liver. The median sensitivity of CancerSEEK was estimated to be 73% and 78% for stage II and stage III cancers, respectively. Unfortunately, the success rate of CancerSEEK for stage I cancer was limited to 43% (Fig. 2(a)). In spite of its low detection ability for stage I cancer, its ability to narrow down the localization of the cancer in 83% of the patients (Fig. 2(b)) makes CancerSEEK as a most reliable method for cancer detection.
Fig. 2 Performance of CancerSEEK: (a) Sensitivity of CancerSEEK by stage; Bars represent the median sensitivity of the eight cancer types and error bars represent standard errors of the median; and (b) Sensitivity of CancerSEEK by tumor type. Error bars represent 95% confidence intervals.
CancerSEEK is expected to be available in the next few years at an estimated cost of less than US$500. Since cancer-related proteins used by Cancer-SEEK could also appear in people with inflammatory diseases such as arthritis, the applicability of this test for such patients is questioned. As an early detection is the key to surgically remove cancer cells before they metastasise, the detection level of 43% for stage I cancers needs to be improved by a large margin.
T.S.N. Sankara Narayanan
For more information, the reader may kindly refer to: J. D. Cohen et al., Science 10.1126/science.aar3247 (2018)

Fig. 1 Schematic representation of the various stages involved in the fabrication of Cu nanowires
Fig. 2 FE-SEM micrographs of (a) bottom side of the AAO (after removal of Al alloy using 0.1 M CuCl2 in HCl) indicating the effectiveness of BLT performed at Un+1 = 0.75 Un; Δt = 60 s; and (b) ED Cu NW
Fig. 2 (a) Optical images and (b, c) mass spectrometric images of a mouse hippocampal tissue slice
Fig. 1 (a-j) Various stages involved in the fabrication of nanowire-based device; and (k) schematic of the collection and extraction of EV–encapsulated miRNAs.
Fig. 1 Surface and cross-sectional (top insets) SEM images of TiO2 NRAs obtained by: (a) air-drying; and (b) freeze drying methods (bottom insets: optical images)
Fig. 2 (a) UV-Vis-NIR absorption of the TiO2 NRAs formed on FTO substrates, (top inset: diffused reflectance spectra; bottom inset: Kubelka-Munk function vs. energy); and (b) schematic energy level diagrams
Fig. 3 (a) Photocurrent decay curves (inset: parallel capacitance vs. applied potential plots); (b) J-V curves (top inset: model of DSSCs using TiO2 NRAs)
Fig. 1 (a) Schematic illustration of the measurement of reflection wavelength change of PCs; (b) dried porous silica powders added to the supersaturated SiO2/EG-EtOH solution; (c) precipitated red photonic crystals turned green around the porous powder; and (d) reflection spectra of colloidal PCs
Fig. 2 (a) Schematic representation of the positive relationship between pore volume (V) and the reflection wavelength changes induced by unit mass of porous materials (Δλ/m); (b) increase in wavelength change (Δλ) and an increase in slope of the “Δλ-m” curve with an increase in mesopore mass (m)
Fig. 3 Schematic representation of negative relationship of pore diameter (D) with average absorption temperature (T) of mesopores SiO2; (b-g) temperature evolution of reflection change caused by the addition of mesoporous silica standards with different pore volumes
Fig. 1 Schematic of the experimental set-up used for proton-driven ion introduction (PDII) – intercalation of alkali metal ions into TaS2
Fig. 2 (a) Schematic of the Cu intercalation; (b) Optical images of the top and bottom surfaces of CuI after PDII. (c) Conditions under which homogeneous an partial intercalation of Cu into TaS2 occurs
Fig. 3 Schematic of the ion substitution process – K+ ion substitution in the Na+ site in Na3V2(PO4)3 and cross-sectional optical images of Na3−xKxV2(PO4)3
Fig. 1 Preserving and stabilizing Li metal by cryo-transfer method: (a) Li metal dendrites are electrochemically deposited directly onto a Cu TEM grid and then plunged into liquid N2 after battery disassembly; and (b) The specimen is then placed onto the cryo-TEM holder while still immersed in liquid nitrogen and isolated from the environment by a closed shutter. During insertion into the TEM column, temperature is not increased > –170 °C, and the shutter prevents air exposure to the Li metal.
Fig. 2 (a) Cryo-TEM and (b) Cryo-SEM images of Li metal dendrites depicting that the morphology is preserved by the cryo-transfer method; (c to e) time-lapse images of Li dendrite; (f to h) growth of Li metal dendrites along: (f) <111>; (g) <110>; and (h) <211> directions.